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THE DOUBLE ELECTRICAL LAYER AT THE SURFACE OF A

SATELLITE

M. A. Gintsburg

As is known, a satellite acquires a certain charge in the iono-

sphere, and accordingly a double electrical layer is formed at its

surface [1, 21 (Fig. 1). Knowledge of the structure and properties

of the double electrical layer is very essential: the interaction

between the satellite and the ionosphere occurs "through" the double

layer; the double layer determines the boundary conditions, and also

affects the physical agents of the more complicated processes of iono-

spheric disturbance, the electron and ion beams formed by the satellite.

Three equations describing the distribution of the electrical field

in the double layer have been given in the literature. These equations

differ, however, and lead to differing dependences of the potential

upon the distance from the wall. It is advantageous, therefore, to

indicate briefly the differences between these three theories and

what they give when applied to a concrete problem of a satellite in

the ionosphere. This is the purpose of the present review [January,

1959].

WDTT62-i80/i+2+



i" The Double Layer in Thermo-

dynamic Equilibrium [3J
+ .+ -

The original position of the

S4.classical theory of the double layer

+ used in electrochemistry and colloid

-++chemistry is that charged particules

(ions) are in the double layer in a

X0 X state of thermodynamic equilibrium,

Fig. 1. and therefore, are described by the

Maxwell-Boltzmann distribution func-

tion

V~i ) =C'"- )

where u is velocity, x a coordinate, q - 9(x) the potential, e the

charge of a particle, m its mass, and T temperature. For clarity,

let us examine only the one-dimensional case (a plane double layer,

Fig. i) when the problem is solved in quadratures. The other cases

(spherical, cylindrical layer) are solved by numerical integration of

the correspondirZ equations, but the physical picture remains the

same as for a plane double layer. If the thickness of the double

layer d is much less than the linear dimensions of the surface of

the satellite Lc (d << Lc for large satellites with Lc w i m), then

the double layer can be assumed plane in the first approximation.

Therefore, the plane double layer is an important limiting case, by

which It is convenient to explain the physical picture.
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The kinetic equation

(2)

has, as is easily verified by substitution, a standard solution

F = X (:- - .-) )

where X is an arbitrary function of its argument m.- + eq. Obviously,

the form of the function X is determined by the boundary conditions.

In our case there are two such conditions: x = 0 and x = s. At x = O,

as in all space, X must be a symmetric function of velocity (i.e.,

at any u, X(u) = X (-u)); the wall is reflecting. At infinity (q = 0),

the function X must convert to Maxwell distribution (1). By choosing

X in the form of (i), we satisfy both boundary condittons and obtain,

there, a unique solution of the problem of a double layer in equilib-

rium near a reflecting wall.

The theorem that electrons and ions in the double layer near a

reflecting wall are described by distribution (1) follows from the

general principles of statistical physics. This theorem is examined

in a work by Mott-Smith and Langmuir [4]. It is valid for any sign

of the satellite potential q., for a decelerating as well as for an

accelerating field.

By knowing the distribution function (e.g., (i)) for ions and

electrons, it is easy to calculate the field in the double layer. The

Poisson equation in this one-dimensional case takes the simple form

dx
2 ( (4i)

where e is the absolute value of the electron charge, no the electron

and ion concentration at infinity (in an undisturbed ionosphere),

and T. = Ti is the electron and ion temperature.

Introducing the new variables

,TP-TT-62-vi,38O/i+2+4 -3-



= and 47. is the Debye radius) (5)

let us transform (4) to

y sinh y (6)

(the double prime denotes differentiation with respect to ). Let

us mu~tiply both sides of (6) by 2y':

2y'y" = 2 sinh yy'.

The derivative of (y')2 is on the left, the deriTative of 2 cosh y on

the right, i.e., (y')2 = 2 cosh y + C1.

When - a, y = 0, so that

C3. = -2

and

Let us integrate again:
..... In C.,. C'--. " i- C (8)

When = 0, y = c/kT (pc is the potential of the satellite). Let

us denote this boundary value by z(z - ec/kT). Then

C,.

and finally

,"' 21. _ - '' (9)

The double layer can be divided into two regions. In the first

region near the wall jyj = ej /kT> I, i.e.., the potential of an

electron or ion in the field of the layer is greater than the energy

of its thermal motion. In this region a space charge is created by

ions, and the electron concentration is exponentially small

(ne -v noe'Il). Equation (4) takes the form: y" - ey , i.e., it is

essentially nonlinear.

-4-



In the second region, at Ijy << i, the potential energy can

be considered a small addition to the energy of thermal motion.

Correspondingly, Eq. (4) becomes linear: y" = y (when Iyl << i,

sinh y f y). A space charge p = ni - ne is created by ions and

electrons (the concentration of both is small):

The potential drops in this region according to the law 4p = qoe- .

The difference between the linear and nonlinear regions cf the

double layer is shown in Fig. 2, but not to scale.

The dependences of the potential 9, field strength E, and spacc

charge p upon the distance to the wall x which follow from Eq. (4)

and its solution (9) are shown in Figs. 3 to 9 (smooth curves) for

various values of the potential of the satellite 9c = -0.77 v (Figs.

3 to 5)p c - -6 v (Figs. 6 to 8), and 96=- 30 v (Fig. 9). The

potential and field drop vary rapidly: at a distance x = RD even at

low satellite potentials ( = -0.77 v, z = -5.15) the potential

decreases to 8% 4c, the field to 7% of its value at the wall, and the

ion concentration to 0.5% of its value at the wall. At 9c = -6 v,

this decrease goes even more rapidly. Thus according to this theory,

we can use the Debye radius RD as the thickness of the double layer d.

Let us estimate its maximum value for altitudes of 300 to 400 km.

According to the literature [51, at night n - iO/cm3 , kT - 0.15 ev,

then RD = i cm (maximum thickness of the double layer).

For a double layer at equlibrium,(4) through (7), the field

strength at the wall increases exponentially with an increase (modulo)

in the satellite potential q.' reaching 47 kv/cm at ic = -3 v (z =

- -20). It is namely this singularity, together with the dependence

upon y€ of the capacitance of the double layer (see Section 3), which

-5-



could serve for comparison of theory with experiment, and for selection
of a correct model of the double layer by independent measurement of
E and T.. In this it should be borne in mind that, due to unevenness
of the surface of the satellite, E is measured not at x = 0, but at
some distance from the wall on the order of 0.01 to 0.02 mm, so that
the experimental value of E(x = 0) is close to the average value of
E at x = 0.001 to 0.002 cm. At z = -20, x = 0.002 cm, RD = 0.2 cm,
by formula (7) we find E = 300 v/cm, which is considerably less than

47 kv/cm.

Nonljer Region Linear Region

n.

Fig. 2.

2. The Langmuir-Bohm Equation [6 71

As before, the electron distribution is assumed to be a Boltzmann

distribution, i.e.,

n, = noewl/h?.

Under our conditions, when c < 0 and z > i, almost all electrons are

reflected, and this assumption is valid.

However, the ion distribution takes another (non-Boltzmann) form.
Ignoring the thermal energy of the ions, Langmuir and Bohm took

mu'--- const =O.)
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From the condition of constancy of conduction current

div J = 0

we find the relationship between the concentration of ions and their

velocity at a given point:

j n1~LM~ no j/-f,

i.e., approaching a negatively charged wall, the concentration of

positive ions does not increase, as in a double layer in equilibrium,

but, conversely, drops. This reasoning is also applicable for an

absorbing wall. Substituting (ii) into the Poisson equation
d2 - 4r (n, -- n), we find the Langmuir-Bohm equation of the double
dx'-

layer

~= - an
~ .. n0 jikI (1,2)

48
16-% -5.15

0.7- h - 300 xm

RD-2.Z 10

\1. hT- 0,15 ev
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Now a fundamental difficulty arises: we cannot find strict

boundary conditions for this equation. If it is assumed that at

infinity n = no, as in Section i, then, because T-+ 0 as x-+ w., ions

in the double layer will have infinite velocity, and their concentration

will be zero. Assigning a certain condition u = uO when q =qgoat

a finite distance fran the wall, we, in essence, introduce the same

value which we excluded by relation (10), i.e., thermal motion. To

be consistent, we cannot let u = u 0 at x = xwhen taking thermal

motion into account. Instead of u - uo, we must introduce the distri-

bution function f(u, x), and also take the velocity spread into account.

Langmuir and Bohm set the boundary condition approximately: they

4 ~took the field strength E - -d9)/dx = 0 at the boundary of the double

layer at9 0  go- . (Strictly speaking, R - 0 when 9 -0, i.e.,e

at infinity.)
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Multiplying (12) by df/dx, let us integrate and use the approximate

boundary condition

when x x-x 0 yo, 4-.= (43)

We obtain the followirg equation for T:

S - 12' - +(ek (14)

This equation cannot be integrated in quadratures. It is integrated

numerically (71, where it is taken that o 0 kT/e (the double layer

ends where the energy of thermal motion is of the same order as the

potential energy in the field of the double layer).

Qualitatively, the nature of the solutions of Eq. (I) can be

explained as folows. This equation is more accurate, the lower x.

But when x < RD, I E(V - 90 ) /kT > 1 and tie exponential term in Eq.

(12) is negligible in comparison with 14P/q. Then

4

dx = 4 7foej .1. e.1 ? 1 1 - 3 (15)

i.e., IT[ decreases somewhat more rapidly than according to the linear

law q = pc + ax. If there were a total absence of electrons and ions

at the wall, then the potential would be a linear function of x and

the field strength would be constant. The presence of ions leads

to a decrease in the field in the double layer. But, of course, the

field decreases much more slowly than according to law (9), and,

accordingly, the double layer is much thicker. For example, at

z = -26, 9 decreases to 0 .19c at x 1ORD (7], while according to

(9) this same relative drop in potential occurs at x = 0 .2RD (Fig.

3, smooth curve). Such a slow decrease in the field would lead in

the ionosphere to double layers with a thickness of about one meter,

which is highly improbable.

An advantage to Eq. (2) is that it does not require an ideally
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reflecting wall and thermodynamic equilibrium. However, this equation

does not take thermal motion into account.

All of the above pertains to a wall which is fixed relative to

the plasma. Now let us estimate the set-up time of the double layer

Ti and compare it with the time interval T. during which the field

of the satellite is at a given point in space. The condition for

setting up a double layer is Tc >> Ti. Distribution (i) or (iI) is

set up, roughly speaking, during time T., the time necessary for an

ion to fly through the double layer. Let us find the upper limit

i T Ax* Let us assume that an ion is uniformly accelerated; then

T =rK t' , where a = eE/m is the acceleration. Calculating Tmax'

we can take the maximum value of E, its value at the boundary of the

double layer when x = RD. From the curve in Fig. 4 we obtain:

E = i v/cm when x = RD. Then Tmax = 2.10 - 6 sec. Let the satellite

be a cylinder with length Lc = i mm. Then its field will be at a
Lc

given point during the time -c 
= Le = 10 - 4 sec, i.e., T >> Tit
vc

and distribution (i) has time to be established.

The flight time Ti can also be calculated accurately, by integrat-

ing the equation of motion of an ion with potential 4p(x). For Ti

we obtain the following expression:

dx

where x 0 is the boundary of the double layer, and v i the thermal

velocity of an ion.

If the field E is small then the flight time T. is determined by

the thermal velocity Ti - d/v , .

-12-



3. The Double Layer at Eguilibrium Ion Concentration

At values of T. which are not too high, the change in ion

concentration due to their acceleration by the field is not great:

it is proportional to the root of the ratio of the potentials (see

(ii)). When 9c = -0.77 v, the ion concentration at the wall n1x.0

= 0.5 no, where no is the ion concentration at the boundary of the

layer. At 9c = -3 v, nx=O = 0.2 no.

The nonuniformity of the ion distribution n(x) is taken into

account in Eq. (12); on the other hand, an error is allowed in deter-

mining the boundary conditions, the effect of which on the result is

rather difficult to evaluate. Let us attempt to proceed backwards:

let us assume that, in general, the ion concentration is constant,

which "compresses" somewhat the double layer in comparison with Eq.

(12). In this, however, it is possible to satisfy exact boundary

conditions: E = 0 not when x = xo and 9 = goo as in (12), but when

x-4 o, g-+ 0. The approximation n= const is especially suitable for

the nose surface of a satellite: the velocity of the satellite is

greater than the ion thermal velocity and the velocity created by the

field, and, therefore, an equilibrium ion distribution does not have

time to be established for the given field.

When ni is not a function of x, the Poisson equation takes the

form
:-Y"= 4rnoz (egy / k r - )

or, in dimensionless variables y and t, (5)
" (e -1). ( 7)

Otherwise, it can be written in the form

2y"y' = y'eY - Y',
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I.eo,

When x-# m, y y' = 0, i.e., c- I and

Y'= Vol,-y- , (18)
, du (19)

z 1/ e" -- u -

This integral expresses q as a function of x. The curves of q)(x),

E(x) and p(x), calculated by formulas (18) and (±9), are shown in

Figs. 3, 6 and 10 to 15 (dotted curves).

As was to be expected, the potential decreased more slowly than

according to formula (9), the field strength was less, and the thick-

ness of the double layer somewhat greater. For 4 = -0.77 v, the

potential decreases to 0.i9 c at x = 5RD (see Fig. 3). An equation

similar to (16), but for a spherical problem, has been used by Jastrow

and Pearse [2]. We made the following correotions and additions to

their work:

i) We went into the conditions of the applicability of Eq. (16)
in somewhat more detail.

2) We examined the plane problem and obtained an accurate solution
for it (Jastrow and Pearse [2] examined only the spherical
problem, the corresponding equation was solved numertcally
on computers). The double layer can be assumed plane for
d << L , i.e., for Sputnik III, Explorer III and other
satellites with linear dimensions of i meter and larger (d is
the thickness of the double layer, and Lc is the linear
dimension of the satellite).

3) In accordance with experimental data [8], we took a different
electron temperature: kT = 0.15 ev, lower by a factor of
10, and constructed graphR of the field distribution in the
double layer which correspond more accurately (kT - 0.15 ev)
to the experimental characteristics of the ionosphere (the
calculations were made at IZMIRAN by G. M. Sosnovskaya and
Yu. G. Ishchuk, whom the authpr thanks).

In conclusion to this section, let us make some remarks concerning

concrete conditions for a satellite.
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1. The distribution of electrical charges on the surface of a

satellite is not, strictly speaking, static. The total ion current

over the entire surface of a satellite is equal to the total electron

current over its entire surface. But the electron currents on

individual sections of the surface are not equal to the ion currents.

For example, there is almost no inleakage of ion current to the tail

section s3 (Fig. 16), there are almost no ions in the tail cone, and

the current to the satellite is purely electronic. Conversely, ion

current predominates on the nose surface S1 . As a result, current

flows along the satellite from the nose surface to the tail. As

calculation shows, this current is on the order of O- a.
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E, "M
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Thus the satellite serves as a place for recombination of elec-

trons and ions. In recombination, energy on the order of the ioniza-

tion energy is liberated. It is very low, but the effect of the libera-

tion by the satellite of ionsopheric energy holds in principle*.

p/no

1,0 . . Z-20

0.9.N R. 2 Of

.8..

0.7 \
0.6 \45.4

0.4 %

0.3 " .

O.

0..

C0 2 1. 6 6 10 12 f
o Z.84 5.58 .52 1.35 .,Z /104 ,,M

Fig. 15

2. Double layers are formed on any object (antennas, measuring

instruments, etc.) issuing from the body of the satellite into the

ionsophere. The interaction of two double layers i and 2 leads to the

formation of a potential well with a depth of up to several volts

(Fig. 17 shows the potential curve along the line M1M2 ; A, and A2

are two antennas). By falling into this well, an electron can accom-

plish oscillations in it and be accelerated to considerable energy

(on the order of sq..) This can serve as a source of electron

oscillatiom, and its harmful effect should be borne in mind when

putting various measuring instruments into the ionosphere.

3. Let us calculate the capacitance of the double layer. The

capacitance of a unit surface of a satellite is found by the expression

* Of course, ionospheric energy is imparted to the satellite
in another way: in collisions of ions, electrons and molecules
against the surface of the satellite.
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S- a/ cy where the surface density of the charge a- B Ix . 0. Let

us calculate yx-O by formula (7):

+ -- 2, ., E .. - TI .. (20)

i.e.,

C 7 - (21)

The differential capacitance is also an important characteristic

of the double layer:

= d ' I Osh -. (22)
Cd2iV RI) 2,

As distinct from the capacitance of linear systems, C and Cdif are

functions of 9,; the charge is not proportional to the potential.

Similarly, from Eq. (48) we find

-kT 1

RD

1 , (23)

Qdif 1 t e -

.1/2 -7 ' ez - z - 
t

Measurement of the capacitance of the double layer (for example, the

alternating current differential capacitance) would make it possible

to determine the true structure of the double layer. The simultaneous

measurement of the potential 9. and the field strength at the wall

would be a way to check the theory of the double layer.

-" ..... ...........
S 

VC
uCC+ i p

Fig. 16 Pig. 17
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4. Under the influence of intensive radiation in outer space,

the surface of a satellite can change its properties of reflection

and neutralization of ions striking it, which, in turn, would change

the value of the potential 9c and the structure of the double layer.

4. The Influence of the Magnetic Field

The geomagnetic field does not affect the Maxwell-Boltzmann

distribution (1). The kinetic equation in the presence of an

external magnetic field H has the form
Ofe

)fn , ul )r (24)-+ ugrad, + L E 0.uH]07fl C, T gradJ = 0.

As is easily seen by substitution, distribution (I) also satisfies

this equation. It reduces to zero not only the terms u gradrf +

+ I E graduf, but also the magnetic term [uI-IIl - HUs, l- -

Therefore, the structure of steady-state double layer (4) is not a

function of H, although, of course, the electron trajectories will be

completely different. Conversely, the set-up time of the double layer

is essentially a function of H: charged particles cannot move freely

across the field H, and the presence of diffusion across the field

is due, in Bohm's opinion [71, to a rather complex mechanism, plasma

oscillations (fluctuations), which still has not been explained

definitely (Chapter 2 [7]).

The Larmor radius of a particle RH = cmuT/eH is a characteristic

which determines the influence of the magnetic field. In our concrete

boundary-value problem it is the magnitude of the Larmor radius

relative to the other characteristic parameters of length: the

dimensions of the satellite Lc and the thickness of the double layer d.

For ions, RH = 3 to 4 m, i.e., it is of the same order of magni-

tude as the dimensions of large satellites. Therefore, the magnetic

-19-



field influences the ion current to the satellite. The fact of the

matter is that the approximation of the Langmuir-Mott-Smith probe

theory [4, 9] which is usually used [1, 2] for calculating the current

to a satellite and the potential qc is valid only when the dimensions

of the probe (in our case a satellite) are many times smaller than

the path length ki. When H = O,Xi -IO. cm and Xi >> Lc; this condi-

tion of the applicability of the probe theory is fulfilled. When

H ' 0, the role of the "lower boundary" of Xi for the path across the

field is played by the Larmor radius RH. Inasmuch as RH ~ Le, it

must be taken into account that the presence of a probe (satellite)

disturbs the plasma, changing the number of particles in the surrounding

space. The magnetic field affects electron motion to an even greater

degree. For electrons, the Larmor radius rH ~ 2 cm, i.e., the inverse

inequality rH >> Lc is fulfilled and the geomagnetic field considerably

decreases the electron current to the probe.

The magnetic field also affects the trajectory of particles

reflected from the surface of the satellite. In flight along the

field H, electrons reflected from the nose surface of a satellite

move along the lines of force, forming an electron beam. The direction

of this motion (along the lines of force of the field H) is created

by the magnetic field. There will be an ion current in front of the

satellite. As with the electrons, the ions will move along the lines

of force. The distance at which these beams are still "distinguishable"

in front of the satellite is on the order of that of the free path

along the field, X - 1O5 cm.

In flight across the field H, the reflected beam flies in front

of the satellite at a considerably shorter distance. It is on the

order of rH (Fig. 16), because an electron moves simultaneously along

-20-



both the Larmor orbit and the field, i.e., along the nose surface of

the satellite. The beam will not be as intensive in flight perpendic-

ular to the field as it is in longitudinal flight. The most inter-

esting effect connected with the magnetic field is, perhaps, electri-

cal drift. As is known [10, :i], in the presence of a magnetic field

H and an electrical field E simultaneously, a charged particle acquires,

besides Larmor precession, an additional motion in a direction perpen-

dicular to both H and E with velocity

WD-_ H, HJ(25)

This motion is called electrical drift. The electrical field B in our

case is the field of the double layer, the magnetic field N is the

geomagnetic field.

Unfortunately, the division of motion into Larmor precession and

uniform drift (25) is valid only in a sufficiently uniform electric

field, where rH << d. In our case rH - d, therefore, the drift

velocity should be determined not by Eq. (25), but from accurate

equations of motion of an electron or - -eN - -- [vN]. The solutionC

of these equations has the form
x

dx
"// M IWO - ET Wx] -r-[ Yo + WH ( -x)

where Wo and Yo are the total energy and velocity of an electron in

the direction of the drift, 9(x) the potential of the electric field,

wH the Larmor frequency, x0 the distance of an electron from the wall

at the initial moment. For the other coordinate z we have

- 1!/ o -

In flight along the field (Fig. i8 a and b), drift leads to flow

around the satellite in the plane perpendicular to the flight. Elec-

trons will move relative to the satellite in a spiral. In flight

TD.-TT.62-i8o/+2+4 -2i-



perpendicular to the field (Fig. 19), drift flow-around will occur

in the longitudinal plane.

WD

I -/ O___me

a) o b) Wo 1

Fig. 18 Fig. i9

A natural question arises: with a negatively charged satellite,

there are very few electrons near its wall (ne f ne ; Figs. 2, 7,

12, 15), while at the place where their concentration is close to no,

the electric field is zero, WD = 0, and it would appear that there is

no drift. But this is not the case at all. Even near the boundary

of the double layer, when ne ' 10-2no, E 10-1 v/cm and WD, according

to formula (25), is on the order of 10 cm/sec (for example, on the

curve for q in Fig. 13, when x = 5RD = 5 cm, 9 -3 v, E = 0.15 v/cm

and WD - 101 cm/sec). Of course, formula (25) is not, strictly

speaking, valid for rH - d, and the drift velocity is really somewhat

less, but here we wish only to indicate the existence of such an effect

(electrical drift in the field of the double layer of a satellite)

and not calculate its value.

For the effect of drift flow-around, satellite motion is not at

all compulsory (although, of course, it exerts an influence). Any

body placed in a plasma acquires a surface charge, and drift about

it arises from the influence of the magnetic field. The essential

singularity of a satellite is a different matter: its dimensions are

much less than the path length,.. and drift (in the ionosphere) is not

PTD-TT-62-i380/i+2+4 -22-



cauplicated by collisions (in any case, in the first approximation).

REFERENCES

1. I. M. Imyanitov. Usp. fizich. nauk, 63, 267, 1957.

2. R. Jastrow, C. Pearse. J. Geophys., Res., 62, 413, 1957.

3. E. Verwey, J. Overbeck. Theory of Stability of Lyophobic
Colloids, N. Y., Amsterdam, 1946.

4. H. M. Mott-Smith., I. Langmuir. Phys. Rev. 28, 127, 1926.

5. R. Smith-Rose. Proc. IRE, November, 1958.

6. I. Langmuir. Phys. Rev., 34, 876, 1929.

7. D. Bohm. The Characteristics of Electrical Discharges in
Magnetic Fields, ed. by A. Guthrie and R. Wakerling. McGraw-Hill,
N. Y., chap. 3, 1949.

8. Y. L. Al'pert, V. L. Ginzburg and Ye. L. Feynberg. Radio
Wave Propagation, Moscow and Leningrad, Gostehizdat, 1953.

9. V. L. GranovskiZ. Electric Current in a Gas, Vol. I, Chapter
8, Moscow an d Leningrad, Gostekhizdat, 1952.

10. S. A. Boguslovskiy. Electron Paths in Electromagnetic Fields,
Gostekhizdat, Izd. MGU, 1929.

11. N. N. Bogolyubov and P. N. Zubarev. Ukrainskiy matematicheskLy
zhurnal, T, No. 2., 255.

pTD-TT-6e-i380/i+2+4 -23-



DISTRIBUTION LIST

D3PA~rai OF DSF'ENSE lir. Copies I-aliAo3 AM~ COMflUMS Nr. Copies

AFSC
SUETR 1
ASTIA 25

H17,1 Q.UARTPERS USAP TD-Bla 5
TD-Blb 3

AFCI-3-D2 1AZDC (AEY) 1
.ALa (ARaS) I SSD (SSF) 2

.APGC (PGF) 1
ESD (ESY) 1
RADC (RAY) 1

OT.-'rR AGENCIS AMC (11TW) 1

0T1
Si. 6

A:M 2
O.?S 2

A~ 0 2

RAM1

16-2T62-1380/1+2+4 24


